Accounting seasonal nonstationarity in time series models for short-term ozone level forecast
نویسندگان
چکیده
Due to the nonlinear feature of a ozone process, regression based models such as the autoregressive models with an exogenous vector process (ARX) suffer from persistent diurnal behaviors in residuals that cause systematic over-predictions and under-predictions and fail to make accurate multi-step forecasts. In this article we present a simple class of the functional coefficient ARX (FARX) model which allows the regression coefficients to vary as a function of another variable. As a special case of the FARX model, we investigate the threshold ARX (TARX) model of Tong [Lecture notes in Statistics, Springer-Verlag, Berlin, 1983; Nonlinear time series: a dynamics system approach, Oxford University Press, Oxford, 1990] which separates the ARX model in terms of a variable called the threshold variable. In this study we use time of day as the threshold variable. The TARX model can be used directly for ozone forecasts; however, investigation of the estimated coefficients over the threshold regimes suggests polynomial coefficient functions in the FARX model. This provides a parsimonious model without deteriorating the forecast performance and successfully captures the diurnal nonstationarity in ozone data. A general linear F-test is used to test varying coefficients and the portmanteau tests, based on the autocorrelation and partial autocorrelation of fitted residuals, are used to test error autocorrelations. The proposed models were applied to a 2 year dataset of hourly ozone concentrations obtained in downtown Cincinnati, OH, USA. For the exogenous processes, outdoor temperature, wind speed, and wind direction were used. The results showed that both TARX and FARX models substantially improve one-day-ahead forecasts and remove the diurnal pattern in residuals for the cases considered.
منابع مشابه
Tree-based threshold modeling for short-term forecast of daily maximum ozone level
This paper proposes a simple class of threshold autoregressive model for purpose of forecasting daily maximum ozone concentrations in Southern California. Linear time series model has been widely considered in environmental modeling. However, this class of models fails to capture the nonlinearity in ozone process and the complexity of meteorological interactions with ozone. In this article, we ...
متن کاملمدلسازی و پیشبینی تراز آب زیرزمینی با کاربرد مدلهای سری زمانی (مطالعه موردی: دشتهای استان همدان)
Regarding the reliance of the agricultural and industrial sections and the drinking water on the groundwater resources in Hamadan province, the modeling and forecasting groundwater level fluctuations to utilize the resources is a basic necessity. One of the usual method in this way is the utilization of the time series models that give simply and clearly good short-term forecasts if the models ...
متن کاملپیشبینی خشکسالی هیدرولوژیک با استفاده از سریهای زمانی
INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a univ...
متن کاملCombination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting
In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...
متن کاملOverview and Comparison of Short-term Interval Models for Financial Time Series Forecasting
In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005